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Abstract. Client-side Flash proxies provide an interface for JavaScript
applications to utilize Flash’s cross-domain HTTP capabilities. However,
the subtle differences in the respective implementations of the same-
origin policy and the insufficient security architecture of the JavaScript-
to-Flash interface lead to potential security problems. We comprehen-
sively explore these problems and conduct a survey of five existing proxy
implementation. Furthermore, we propose techniques to avoid the identi-
fied security pitfalls and to overcome the untrustworthy interface between
the two technologies.

1 Introduction

Over the period of the last decade, Web applications have exposed an ever
growing emphasis on sophisticated client-side functionality. In many places, the
request-response-render Web of the early days has made way for rich JavaScript
clients that utilize AJAX-driven communication and dynamic user interfaces.
However, as the evolution of the Web browser’s native capabilities did not al-
ways kept pace with the rapid innovation of the application’s demands, plug-in
technologies, such as Adobe Flash [1] filled the gap and provided advanced fea-
tures which were missing in the browsers.

However, the security policy implemented by browser plug-ins does not al-
ways exactly match the security model of the Web browser. In certain areas,
already subtle deviations can lead to security implications which are hard to
handle.

In this paper we examine how the difference in handling the same-origin
policy in respect to cross-domain JavaScript and cross-domain Flash lead to
unexpected consequences. For this purpose, we explore the field of client-side
Flash proxies for cross-domain requests. After covering the technological basis
of client-side HTTP requests (Sec. 2), we explore a little known security flaw
that can occur when cross-domain Flash applets interact with adversary con-
trolled JavaScript (Sec. 3). To substantiate our observation, we examine five
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publicly available client-side Flash proxies (see Sec. 3.3). Furthermore, we show
how to overcome the identified issues. First, we solve the specific problem of
providing a secure and flexible client-side Flash proxy (Sec. 4). Secondly, we
tackle the general problem of implementing Flash-based functionality that reli-
ably makes origin-based security decisions even when interacting with untrust-
worthy JavaScript (Sec. 5). After discussing related work (Sec. 6) we finish with
a conclusion (Sec. 7).

2 Client-side cross-domain HTTP requests

2.1 Technical background

In general, the same-origin policy (SOP) [26] is the main security policy for all
active content that is executed in a Web browser within the context of a Web
page. This policy restricts all client-side interactions to objects which share the
same origin. In this context, an object’s origin is defined by the URL, port, and
protocol, which were utilized to obtain the object. While this general principle
applies to all active client-side technologies (e.g., JavaScript, Java applets, Flash,
or Silverlight), slight variations in the implementation details exist. Please refer
to [35] for further reference.

Based on the SOP, the initiation of network connections from active content
in the browser is restricted to targets that are located within the origin of the
requesting object1. This means, a JavaScript that is executed in the browser in
the context of the origin http://www.example.org is only permitted to generate
HTTP requests (via the XMLHttpRequest-object [31]) to URLs that match this
origin. The same general rule exist for Flash, Silverlight, and Java.

However, in the light of increasing popularity of multi-domain, multi-vendor
application scenarios and ever growing emphasis on client-side functionality, a
demand for browser-based cross-domain HTTP requests arose (e.g., in the field
of Web2.0 Mashups), as such request have the ability to mix data and code from
more then one authorization/authentication context (see Sec. 2.2).

Following this demand, the ability to create cross-domain HTTP requests
from within the browser has been introduced by Adobe Flash [1]. To avoid
potential security implication (see Sec. 2.5), the designated receiver of the HTTP
request has to explicitly allow such requests. This is done through providing a
crossdomain.xml-policy file [2] which whitelists all domains that are allowed to
send browser-based cross-domain HTTP request.

Following Flash’s example, Silverlight and Java have also introduced ca-
pabilities for browser-based cross-domain HTTP requests. To enforce similar
’recipient-opt-in’ policies as in Flash’s model, Silverlight and Java imitate the
crossdomain.xml mechanism of requiring policy files.

1 NB: This restriction only applies to HTTP requests that are created by active code.
HTML elements, such as IMG or IFrame are unaffected and can reference cross-
domain objects.



A closer look at client-side Flash proxies for cross-domain requests 3

2.2 Use cases for client-side cross-domain HTTP requests

The need for client-side cross-domain requests is not immediately obvious. Al-
ternatively, the Web application could offer a server-side proxying service that
fetches the cross-domain content on the server-side, instead of requiring the
client-side browser to issue the cross-domain requests. Such a service can be
accessed by the client-side code via standard, SOP-compliant methods. This
technique is offered for example by Google’s Gadget API [11].

However, this technique is only applicable in cases in which the Web ap-
plication’s server-side code is able to access the requested content, e.g, when
requesting publicly available internet resources.

Server-side proxies might not be applicable whenever the access to the re-
quested content is restricted. Examples for such scenarios include situations in
which the requested content is unavailable to the server because of network bar-
riers (e.g., an internet Web application interacting with intranet data) or cases in
which the demanded information is only available in the current authentication
context of the user’s Web browser (e.g., based on session cookies, see Sec. 2.5
for details). Such use cases can only be realized with client-side cross-domain
capabilities.

2.3 The current move towards native browser capabilities

After a period of perceived stagnation of Web browser development and inno-
vation, the recent years have shown rapid progression of browser technologies.
This movement was initially lead by the Web Hypertext Application Technology
Working Group (WHATWG [33]) and has now been picked up by the W3C and
IETF.

A significant part of the work of these groups (and associated Web browser
vendors) is the adoption of capabilities, that have successfully been introduced
by browser plug-in, and their addition to the browser’s native HTML/JavaScript
functionality. Examples for such capabilities include audio/video playback and
expanded networking capabilities.

This development leads to the prediction that in the future such native capa-
bilities will reduce the current dependency on browser plug-ins. First indicators
of this trend are the mobile Web browsers of the iOS and Windows Phone Seven
platforms that completely rely on native technologies and do not provide support
for browser plug-ins.

In the course of expanding JavaScript’s networking stack, the ability to
create cross-domain HTTP requests have been added. JavaScript’s native im-
plementation is called Cross-origin Resource Sharing (CORS) [32]. CORS uti-
lizes JavaScript’s XMLHttpRequest-object for this purpose. Instead of following
Flash’s example of utilizing policy files, CORS utilizes HTTP response headers
to allow or deny the requests. Only if the HTTP response carries an allowing
HTTP header, the received data is passed on to the calling script. This behav-
ior allows much more fine-grained access control compared to the established
policy-based mechanisms.
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Fig. 1: Client-side cross-domain Flash proxy

2.4 Client-side cross-domain Flash-proxies for legacy browsers

Given the move towards native JavaScript capabilities in modern browsers and
the expected fading importance of browser plug-ins (see above), it becomes in-
creasingly important for Web applications to support CORS for scenarios which
utilize client-side cross-domain requests. As a consequence, for the time being
developers will have to implement two variants of the same cross-domain re-
quest functionality in parallel: A version that utilizes Flash or Silverlight for
legacy browsers that do not yet provide CORS and a CORS version for mod-
ern browsers that either do not support plug-ins, such as most mobile browsers,
and for browsers in which plug-ins have been disabled (e.g., for security rea-
sons). Based on experiences with the longevity of old browser variants, such as
Internet Explorer 6, it can be expected that this transitional phase will last a
considerable amount of time.

To ease this development, client-side Flash-proxies have been introduced
which export Flash’s cross-domain capabilities to JavaScript (see Fig. 1). These
proxies are small, single-purpose Flash applets combined with a small JavaScript
library that together provide an interface to the enclosing page’s JavaScript for
initiating HTTP requests to cross-domain targets and passing the corresponding
HTTP response back to the calling script. Figure 2 shows the interaction pattern
between the JavaScript library and the Flash applet.

To further ease the use of these proxy libraries, extensions for popular JavaScript
frameworks, such as JQuery or Dojo, are provided that import the functional-
ity into the respective framework. In most cases this is done in a fashion that
makes its usage almost transparent to the developer, i.e., through exchanging
the framework’s networking methods with the corresponding functions of the
proxy library.
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Fig. 2: Interaction between JavaScript and the Flash proxy

In a survey we were able to identify five different published Flash proxy
libraries which provide the described functionality. See Table 3.3 for a brief
overview.

2.5 Security implications of client-side cross-domain HTTP requests

Before we discuss the potential security problems introduced by client-side Flash
proxies in Section 3, we briefly revisit the general potential security problem that
can arise in connection with client-side cross-domain HTTP requests.

Attacker model: From now on, we consider the following scenario: The victim
visits a Web site a.net, which is under the control of the attacker. This Web
site is granted the right to create cross-domain requests to a second Web site
b.net, for instance because b.net has an over-allowing crossdomain.xml policy
file that whitelists (“*”) all foreign domains. Furthermore, the victim currently
possesses an authenticated session state with b.net, i.e., in the victim’s browser
a session cookie for this domain exists.

This setting allows the attacker to create arbitrary HTTP requests to b.net

from within the victim’s browser and read the corresponding HTTP responses.
The victim’s cookies for b.net, including the authenticated session cookies, are
attached to these requests automatically by the browser, as the cookies’ domain
matches the target domain of the outgoing HTTP request. These requests are
received and handled by b.net in the same fashion as regular requests coming
from the victim, hence, they are interpreted in the victim’s current authentica-
tion context.
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Resulting malicious capabilities: We can deduct the several potential attack vec-
tors, based on the scenario discussed above.

Leakage of sensitive information [13]: The adversary can obtain all infor-
mation served by b.net which the victim is authorized to access by sim-
ply requesting the information via HTTP and forwarding the corresponding
HTTP responses to the attacker’s server.

Circumvention of Cross-site Request Forgery protection [27]: The secu-
rity guarantee of nonce-based Cross-site Request Forgery (CSRF) protec-
tion [7] is based on the assumption that the attacker is not able to obtain
the secret nonce which is required for the server to accept the request. These
nonces are included in the HTML of b.net. As the adversary is able to read
HTTP responses from b.net, he can request the page from b.net that con-
tains the nonce, extracting the nonce from the page’s source code, and using
it for the subsequent HTTP request.

Session hijacking [23]: As discussed, the adversary has the ability to create
arbitrary HTTP requests that carry the victim’s authentication credentials
and read the corresponding HTTP responses. In consequence, this enables
him to conduct attacks that are, for most purposes, as powerful as session
hijacking attacks which are conducted via cookie stealing: As long as the
targeted application logic remains in the realm of the accessible domain (in
our case b.net), the attacker can chain a series of HTTP requests to execute
complex actions on the application under the identity of the user, regardless
of CSRF protection or other roadblocks. This can happen either in a fully
automatic fashion, as for instance XSS worms [18, 21] function, or interactive
to allow the attacker to fill out HTML forms or provide other input to his
attacks. Frameworks such as BeEF [5] or MalaRIA [23] can be leveraged for
the interactive case.

3 Abusing client-site cross-domain Flash proxies

In this section, we explore a little known2 security problem that is caused by
the way Web browsers handle the SOP in respect to cross-domain Flash applets.
Hence, from now on, we limit the scope of the discussion to JavaScript and Flash.

3.1 Subtle differences in the SOP

Both JavaScript files and Flash applets can be included in foreign Web pages
of arbitrary origin due to the HTML’s transparent handling of cross-domain
locations in tags, such as script, object, or embed (see Listing 1). However, the
specifics how the SOP is applied to such cross-domain active content differs [35]:

Cross-domain JavaScript code inherits the origin of the enclosing domain. It
is handled as if it was a native component of the enclosing Web page and looses
all ties to its original origin.

2 During investigating the topic, we only encountered one single blog post discussing
the issue [29]. Besides that, there appears to be no awareness.
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Listing 1 Cross-domain inclusion of script and Flash code

<!-- HTML source of a Web page served by a.net -->

[...]

<!-- cross -domain JavaScript -->

<script src="http ://b.net/somescript.js" />

<!-- cross -domain Flash -->

<object [...]>

<param name="movie" value="http ://b.net/flash_proxy.swf" />

<param name="quality" value="high" />

<embed src="http ://b.net/flash_proxy.swf" [...]></embed >

</object >

Opposed to this, cross-domain Flash applets keep the origin from which the
Flash’s swf-file was retrieved. As a consequence, all security relevant actions are
restricted or granted in the context of the Flash’s original origin. In particular,
this means that a browser’s decision if an outgoing HTTP request will be per-
mitted, is made based on checking the destination URL of the request against
the original origin of the Flash and not based on the origin of the enclosing Web
page.

Consequently, in cases in which a Flash applet provides a public JavaScript
interface, this interface can be used by scripts running in the context of the
enclosing Web page to cause actions which are executed under the cross-domain
origin of the Flash applet.

Please note: To provide a public JavaScript interface which can be abused
in the outlined fashion, the Flash applet has to release the exported methods
for external domains using the allowDomain()-directive [4]. The value of this
directive is a list of domains which are permitted to access the declared interface.
However, in the case of general purpose Flash libraries it is common practice to
whitelist all domains (using the wildcard mechanism allowDomain("*")), as at
the time of development the programmer cannot know on which domains the
library will be used (see also Sec. 3.4).

In the remainder of this section we explore attack vectors that result from
the consequences of the mismatching SOP implementations in the context of
client-side Flash proxies.

3.2 Attack vectors

Scenario: In this section we consider a scenario that is similar to the general
misuse case which was discussed in Section 2.5. The victim accesses a Web page
from the domain a.net which is under the control of the attacker. Hence, the ad-
versary is able to execute JavaScript in the context of a.net and import content
from other domains via HTML tags, including cross-domain Flash applets.
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In addition to a.net, two more domains exist: b.net and c.net (see Fig. 3).
The application hosted on c.net exports cross-domain services to b.net and,
hence, provides a crossdomain.xml policy file that allows requests coming from
b.net. To access these services, the application running on b.net utilizes a
client-side Flash proxy, as described in Section 2.4.

!"#$%%&'()*+!"#$%%,'()*+!"#$%%-'()*+

./01*+

2/311435-6('758+

9&/311:435-6(:#386&;<+

!+++9-883=:-&&)11:>/35+435-6(?@"#$%&!A%<++

!+9%&/311:435-6(:#386&;<+

!"#$%%-'()*+
B/3=1)/+

C-D-E&/6#*+ 2/311F35-6('1=>+

Fig. 3: Scenario

Attack variant 1 - Transitivity of trust: The adversary’s script on a.net can
utilize b.net’s Flash proxy to create HTTP requests. Requests to locations that
whitelist b.net in their crossdomain.xml policy are permitted, as the browser’s
security decision is made in respect to the origin of the Flash. This way, the
attacker can conduct the attacks outlined in Section 2.5 targeting c.net, even
though he has no direct control over the domain b.net (see Fig.4).

Attack variant 2 - Return to sender: In addition to creating requests to all
domains that list b.net in their crossdomain.xml policies, the adversary is also
able to make requests from a.net to b.net itself, even in cases in which b.net

does not provide a crossdomain.xml policy at all (see Fig.5). The reason again
is the fact that the Flash applet’s actions are permitted on the basis of its own
origin (b.net) and not on the actual origin of requests (a.net).

Summary: In consequence, through merely hosting a susceptible client-side Flash
proxy, a Web application can undermine both its own security as well as the
security of all Web applications that express trust in this application’s domain
via their crossdomain.xml policy.

3.3 Survey of published Flash proxies

In order to assess how wide spread the issues are, we conducted a survey to
identify readymade client-side Flash proxies. We were able to identify five dif-
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Fig. 4: Attack variant 1 - Transitivity of trust

ferent publicly available implementations: flXHR [30],SWFHttpRequest [34],
FlashXMLHttpRequest [8], CrossXHR [24], and F4A3.

Experimental setup: To check wether the found proxies expose the suspected
vulnerability, we set up the network layout that is shown in Figure 3. The at-
tacking JavaScript and its enclosing Web page were hosted on the domain a.net.
The domain b.net hosted the five swf-files and on c.net a crossdomain.xml

policy was set, which whitelisted only b.net. After writing code to connect the
attacker script with the proxies for the five individual interfaces, we tested if a
script executed under the origin of a.net is able to access text-files which are
hosted on the other two domains.

Results: Out of the five examined implementation, three were vulnerable (see
Table 3.3). For the two proxies which were not vulnerable the attack didn’t work
out, because these two libraries do not utilize the allowDomain(*) directive,
which is needed to expose the SWF’s interface to JavaScript originating from
different domains. Two of the three vulnerable proxies (CrossXHR and F4A)
were exploitable on the first try. The case of flXHR was more interesting, as
the author of the proxy apparently was aware of the security problem and took
measures to mitigate it (he even wrote a blog post about the problem [29]).

3 The development of F4A seems to have ended. We included it in this survey, as it is
still in productive use, e.g., by sites such as nike.com
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Fig. 5: Attack variant 2 - Return to sender

Case study - the flXHR proxy: flXHR is the only implementation that attempts
to defend directly against the in Section 3.2 identified attack vectors. Before
initiating a request, a flXHR proxy tries to compare its own origin with the
origin of the interfacing JavaScript. If these two origin values do not match,
flXHR checks the crossdomain.xml file of the request’s target domain manually,
if the origin of the JavaScript is whitelisted in the policy. This is even done, when
the target of the request matches the origin of the Flash itself.

The problem that arises from this solution is how the origin-value of the in-
terfacing JavaScript is obtained: As Flash does not provide such a mechanism na-
tively, the only possibility to accomplish this task is to use the ExternalInterface
API [3] to call a JavaScript function. In the examined case, flXHR obtains the
value through calling the function window.location.href.toString().

However, the JavaScript of the enclosing Web page is completely controlled
by the adversary and, thus, all public JavaScript functions can be overwritten

Name Year Source JS-libs Vulnerable

flXHR [30] 2010 No 1,2,3,4 Yes, despite of countermeasures

SWFHttpRequest [34] 2007 Yes 1,2,3 No

FlashXMLHttpRequest [8] 2007 No 3 No

CrossXHR [24] 2010 Yes 1,2 Yes

F4A unknown No - Yes
Legend:
Year: Year of last recorded activity
Source: Is source code available?
JS-libs: Available plug-in for popular JavaScript frameworks: 1) JQuery, 2) Prototype, 3) Dojo, 4) Mootools
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with function wrappers [22]. With the method presented in Listing 2, an attacker
can fake the location of his page and make flXHR believe that the enclosing origin
matches its own.

As we will discuss further in Section 5.1, with the ExternalInterface API it
is not possible to fix this problem, because it only allows to call public JavaScript
functions by name and not by reference. Therefore, it is not possible to call a
function which cannot be overwritten by an adversary. In Section 5.2 we describe
our approach towards ensuring that the received location value has not been
tampered with.

Listing 2 Subverting flXHR’s protective measures

self = new function (){}

self.location = new function (){};

self.location.href = new function () {

this.toString = function (){

return "http ://b.net";

};

};

3.4 Analysis

After conducting the practical vulnerability testing, we further investigated the
cause of the problem via analysis of the source code (when available) or via
decompilation of the binaries.

In all three vulnerable cases, the cause of the exposed insecurity is an over-
allowing internal policy in respect to interaction with external JavaScript: All
three vulnerable applets used the directive allowDomain("*") within their code
(see Sec. 3.1). Even the author of the flXHR proxy decided to do so, although
he was aware of the resulting potential security problems.

The reason for this design decision is inherent in the purpose of the applets:
They are built to function as pre-built, drop-in solutions which can be used
without modifications, following the design of general purpose programming li-
braries.

Without an allowdomain() directive, the Flash would only function with
JavaScript of an origin that exactly matches the origin of the Flash file. This
behavior is bound to cause problems with Web application configurations that
utilize more than one (sub-)domain. Already enabling the Web application to be
accessed using both the plain domain (e.g., http://example.org) and the www-
subdomain (http://www.example.org) potentially breaks the proxy’s function-
ality for one of the two alternatives.
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4 Methods to provide secure client-side Flash proxy
functionality

In this section we explore the safe inclusion of a client-side Flash proxy in a
Web application. For this, we propose two approaches: First, we discuss how to
apply the general method of CSRF protection to securely include a prefabricated,
potentially vulnerable Flash proxy (see Sec. 4.1). Secondly, we show how to build
a custom proxy that is safe against the attack without giving up to much of the
flexibility of the existing solutions (see Sec. 4.2).

4.1 Secure inclusion via CSRF protection

Some of the already existing Flash proxies (e.g. flXHR) are matured software
and provide well tested support code, such as plug-ins for popular JavaScript
frameworks. For this reason it might be desirable to use them regardless of the
identified security issues.

To do so securely, the application has to ensure that the proxy is only used
within its foreseen environment, i.e., the proxy is indeed included in a Web
page that belongs to the application. This can be done by adapting the nonce-
based schema of CSRF-protection [7]: Instead of serving the applet’s swf-file as
a static binary, the code is delivered by a server-side script. This script verifies
that the requesting URL contains a secret nonce which is tied to the requesting
browser’s session cookie, e.g., in the form of a URL parameter (see Listing 3 for
an example). Only if the received nonce matches the expected value, the SWF
is delivered to the browser. As the adversary cannot obtain such a nonce for the
victim’s current browser context, he is not able to create the attacking page and,
hence, is unable to execute the attack.

Listing 3 CSRF protected delivery of Flash code (PHP example)

<?php

if ($_GET["anti_csrf_nonce"] == $_SESSION["nonce"]){

$swf = [...] // binary data of the .swf file

header("Content -type: application/x-shockwave -flash");

echo $swf;

} else {

... // Generate 500 internal server error

}

?>

4.2 Flexibly restricting the Flash-to-JavaScript interface

In order to enable HTML-to-SWF communication, Flash uses the External-

Interface API to expose functionality to JavaScript. Cross-domain scripting
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from JavaScript to Flash, however, is forbidden by default. In cases where
cross-domain communication is needed the directive flash.system.Security

.allowDomain("http://c.net") can be used inside an SWF to grant scripting
access from c.net.

As explained in Section 3.4 this fact causes problems for general purpose,
pre-built solutions which are supposed to be usable without modifications. Thus,
these libraries often use allowDomain(’*’), which grants cross domain scripting
access from all domains to the SWF. However, using this directive has severe se-
curity implications as the SWF is now vulnerable to the attack vectors described
in Section 3.2.

As it is not feasible to disable cross-domain scripting on SWF files for general
purpose libraries, we see two possibilities on how to avoid the use of
allowDomain("*"): Hardcode the set of trusted domains or dynamically parametrize
allowDomain-based on a separate configuration file.

The first solution requires the user to hardcode all domains he would like to
grant cross-domain access to in the source code of the swf-file. This solution has
two major shortcomings. For one, the user needs to have the ability to compile
the source code into a working swf-file. Furthermore, he needs to do this each
time he wants to update his access grants.

Therefore, we propose an alternative solution which uses a separate config-
uration file and dynamically grants access to all domains specified in this file.
With the help of this file a user can change his configuration at any time without
the need of recompiling the SWF. As this solution provides the needed flexibil-
ity and does only grant cross-domain access to trusted domains and not to the
general public it is well suited for general purpose libraries.

Implementation: To examine the feasibility of this approach, we successfully
created a slightly modified version of the open source crossXHR [24] proxy. On
instantiation, the modified proxy now requests an alloweddomains.xml file from
the proxy’s original host (this location information can be obtained without re-
quiring interaction with the potentially untrustworthy interfacing JavaScript).
The set of domain-values contained in the received file are passed to the
allowDomain call.

5 Securely offering public Flash interfaces

The methods described in Section 4 are sufficient to securely provide a Web
application with a client-side Flash proxy. However, the underlying problem
remains unsolved: How can we publicly provide a general purpose Flash applet
that reliably enforces security restrictions based on the origin of the JavaScript
which the applet interacts with?

5.1 Problem: An untrustworthy interface

Flash’s provided option to interact with it’s surrounding container is via the
ExternalInterface.call() method [3]. This method takes the name of one
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public function and an arbitrary number of arguments as parameters. If the sur-
rounding container is an HTML page, this method invokes a JavaScript function
and returns the value provided by the function.

As all public JavaScript functions can be overwritten [22], an adversary is able
to manipulate any value call() could receive, even if the called method is a na-
tive JavaScript method such as eval() or window.location.href.toString()
(see Sec. 3.3). Thus, data which is received by ExternalInterface.call cannot be
trusted. As discussed in [22], in most browsers a wrapped JavaScript function
can be restored to its original state by calling a delete on the function. Hence,
in theory it should be possible to circumvent all actions an adversary has taken
by calling delete before each usage of a native function. But unfortunately,
as delete is a JavaScript keyword and not a function, it cannot be used as
a parameter for ExternalInterface.call(), rendering this potential solution
infeasible.

5.2 Solution: Redirection to fragment identifier

As discussed above, a Flash applet’s capabilities to interact with the enclosing
HTML/JavaScript environment are severely limited and for most parts not out-
fitted to counter JavaScript wrappers which have been set up by the adversary.
Hence, data retrieved from JavaScript cannot be trusted. Nevertheless, Flash
needs to rely on JavaScript to obtain the URL of the enclosing page, in order to
make certain security sensitive decisions.

The idea of the proposed countermeasure is to utilize redirects to fragment
identifiers: If a browser window redirects itself to a URL containing a fragment
identifier (also know as a local anchor), the browser automatically scrolls to
the corresponding location in the displayed document after the page-loading
process has terminated. However, if the URL of the currently displayed Web page
already equals the target of the redirect, the page-loading step is skipped and
the local anchor is accessed directly. This behavior can be utilized for validating
the correctness of an URL which was retrieved by Flash’s external interface
mechanism:

After receiving the supposed URL of the enclosing page, the flash applet
appends a fragment identifier to the URL and instructs the browser to redirected
to the resulting location.

If the originally received URL was correct, i.e., it is indeed the URL of the
enclosing Web page, this redirect does not cause the browser to do an actual
reload. Instead, only the scroll position of the page is changed to the location of
the local anchor, if a matching anchor exists in the page. If no matching anchor
exist, the redirect causes no effects at all4. In any case, the Flash remains active
in the page and can conduct the initiated action (e.g., initiating the cross-domain
request).

4 We tested this behavior with the following browsers: Firefox, Internet Explorer,
Google Chrome, Opera, Safari
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However, if the URL received from JavaScript was manipulated, it differs
from the correct URL. Thus, the browser will redirect the user to the page
the attacker’s JavaScript claims to have as an origin and the Flash applet stops
executing. E.g., in the attack scenario described in Section 3.3, the redirect would
cause the browser window to navigate away from a.net towards b.net.

One remaining weakness of this scheme is, that the attacker could stop the
browser from redirecting, using JavaScript event handlers, such as window.onbeforeunload.
Such an action is not directly noticeable by the Flash applet and, hence, is in-
distinguishable from the browser’s behavior in the correct case.

In order to prevent such attempts, we include a random nonce (large and
unguessable) into the fragment identifier (see Listing 4). Before executing the
security sensitive action the Flash applet requests the enclosing URL from Java-
Script for a second time and compares the received URL to the URL saved by
the Flash applet (includes the nonce) before. If the redirect was prevented, the
attacker is not able to identify the random number and, thus, Flash can detect
that the redirect was stopped and reject the call. If the redirect was successful
and the URL was not tampered with, Flash is able to verify that the two nonces
and the URLs are equal and, thus, can conclude that the first URL received
from JavaScript was indeed correct (see Listing 5).

Listing 4 Redirect to fragment (sketch)

var location: String =

ExternalInterface.call("self.location.href.toString");

var rand = String(Math.floor(Math.random ()* RANDOM_MAX_SIZE ));

this.newLocation = location + "#nonce" + rand";

var request: URLRequest = new URLRequest(this.newLocation );

navigateToURL(request ,"_self");

Listing 5 Verifying the fragment identifier after the redirect (sketch)

var location: String =

ExternalInterface.call("self.location.href.toString");

if(this.newLocation = location ){

newLocation = null;

objects[id].send(content );

}else{

newLocation = null; // invalidate to prevent brute forcing

[...] // die

}
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Fig. 6: Interaction pattern between untrusted JavaScript and a secured Flash applet

Implementation: To verify our hypothesis, we implemented the outlined protec-
tion mechanism, again using the open source proxy crossXHR [24] as the basis of
our implementation. Please refer to Figure 6 for further details on the modified
interaction pattern between the Flash applet and surrounding JavaScript. Our
implementation successfully defied both the general attacks (see Sec. 3.2) as well
as the function wrapper trick (see Sec. 3.3 and Listing 2) while continuing to
provide its designated functionality in legitimate use cases.

Limitation: The proposed countermeasure might cause problems with Web ap-
plications that utilize fragment identifiers to reflect their current application-
state in the URL. Web applications that rely heavily on AJAX-driven inter-
action with their server-side, traditionally expose problems when it comes to
creating hyperlinks which directly lead to specific parts of the application. For
this reason, such applications occasionally append the identifier of the currently
displayed application unit in the form of a fragment identifier to the URL (e.g.
http://twitter.com/#!/datenkeller). If such applications do not foresee that
the proposed countermeasure extends the window’s URL (including the current
fragment identifier) with the random nonce, erroneous behavior might result.
However, this problem is easily avoided by the application. The appended nonce
is clearly marked. Thus, removing it before processing the application’s own
fragment identifier is straight forward.
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6 Related work

The recent history has shown that the evolution of the browser’s client-side
capabilities is often accompanied by the introduction of new security problems.
In this section we list documented cases that relate to the issues discussed in
this paper.

Issues with Flash’s cross-domain request mechanism: The potential security is-
sues with Flash’s cross-domain capabilities have received some attention from
the applied security community [28, 10]. To assess the potential attack surface,
Grossman examined in 2008 the policy files of the Alexa 500 and Fortune 500
websites [12]. He found that at this point in time 7% of the examined websites
had a policy that granted every domain full access via the *-wildcard. Public doc-
umentation of real issues were given by, e.g., Rios [25] who compromised Google’s
mail service GMail by attaching a forged crossdomain.xml to an email, and by
Grossman [13] who accessed private information on youtube.com by uploading
a swf-file to a host which was whitelisted in YouTube’s policy. In 2010, the tool
MalaRIA (short for ’Malicious Rich Internet Application’) [23] was released. The
tool provides a graphical user interface to interactively conduct session hijacking
attacks, as outlined in Section 2.5.

Further flaws of Flash’s client-side networking: Besides cross-domain aspects,
Flash’s handling of client-side HTTP requests exposed further security short-
comings (which have been resolved in the meantime): For one, Flash allowed in
the past to add arbitrary HTTP headers to outgoing requests, leading to issues
such as referrer spoofing or cross-site scripting [20]. Furthermore, it was shown
that Flash’s handling of client-side networking was susceptible to DNS rebinding
attacks [19, 17].

Security problems with modern browser features: The introduction of client-side
cross-domain requests is not the only modern browser feature that was the cause
of security problems. Huang et al. [16] recently discovered that the current de-
sign of the Web socket protocol [15] in the presence of transparent Web proxies
can be abused to conduct DNS cache poisoning attacks. Furthermore, Barth
et al. [6] exposed a shortcoming in the postMessage-API [9] for asynchronous
communication between frames which allowed, under certain circumstances, to
compromise the confidentiality of the inter-frame message exchange. Finally,
Heyes et al. [14] demonstrated how advanced features of cascading style sheets
(CSS) can be utilized to create various information leaks.

7 Conclusion

As we have shown in this paper, the current movement to drop reliance on
browser plug-ins in favor of applications that take full advantage of modern
browser features might expose unexpected security pitfalls. There is a high
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probability that for practical reasons, in this transition phase, Web applica-
tions might utilize a hybrid model for client-side code, which is mainly based
on native JavaScript code and uses Flash (or other plug-in technologies) solely
for fallback solutions on legacy browsers. However, the subtle difference in the
respective implementations of the same-origin policy together with the insuffi-
cient security architecture of the interfaces between the two technologies lead to
complex security issues.

In this paper, we have demonstrated how the class of client-side Flash proxies
for cross-domain HTTP requests is affected by this general problem. Further-
more, we proposed two separate countermeasures that allow the specific case of
Flash HTTP proxies to be handled. These protective measures are not limited to
the explored application scenario but can be applied to securely handle the gen-
eral case – whenever Flash functionality is exposed to potentially untrustworthy
JavaScript. Thus, the discussed techniques can be used to provide generic drop-
in components for legacy browsers to securely support the transitional hybrid
model.
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